4726

4726 Further Pure Mathematics 2

1	(i)	Give $1 + 2x + (2x)^2/2$
		Get $1 + 2x + 2x^2$

(ii)
$$\ln((1+2x+2x^2))$$
 M1
+ $(1-2x+2x^2)$) =
 $\ln(2+4x^2)$ = A1 $\sqrt{12}$
 $\ln 2 + \ln(1+2x^2)$ M1
 $\ln 2 + 2x^2$ A1

2 (i)
$$x_2 = 1.8913115$$
 B
 $x_3 = 1.8915831$ B
 $x_4 = 1.8915746$ B

(ii) $e_3/e_2 = -0.031(1)$ N

$$e_4/e_3 = -0.036(5)$$

State f '(a) $\approx e_3/e_2 \approx e_4/e_3$

3 (i) Diff. $\sin y = x$ Use $\sin^2 + \cos^2 = 1$ to A.G. Justify +

(ii) Get
$$2/(\sqrt{1-4x^2})$$
 M
+ $1/(\sqrt{1-y^2}) dy/dx = 0$

 Find $y = \sqrt{3}/2$ M1

 Get $-2\sqrt{3}/3$ A1

M1 A1	Reasonable 3 term attempt e.g. allow 2. cao SC Reasonable attempt at $f'(0)$ and $f''(0)$ Get $1+2x+2x^2$ cao) M1
M1	Attempt to sub for e^{2x} and e^{-2x}	
A1√ M1 A1	On their part (i) Use of log law in reasonable expression cao SC Use of Maclaurin for f '(x) and f"(x) One correct Attempt f(0), f '(0) and f"(0) Get cao	
B1 B1√ B1	x_2 correct; allow answers which round For any other from their working For all three correct	
M1 A1 B1√	Subtraction and division on their values allow \pm Or answers which round to -0.031 and - Using their values but only if approx. ec allow differentiation if correct conclusion allow gradient for f'	–0.037 Jual;
M1 A1 B1	Implicit diff. to $dy/dx = \pm(1/\cos y)$ Clearly derived; ignore \pm e.g graph/ principal values	
M1 A1 M1 A1√	Attempt implicit diff. and chain rule; all e.g. $(1-2x^2)$ or $a/\sqrt{(1-4x^2)}$ Method leading to y AEEF; from their <i>a</i> above SC Write $\sin(\frac{1}{2}\pi - \sin^{-1}2x) = \cos(\sin^{-1}2x)$ Attempt to diff. as above Replace <i>x</i> in reasonable dy/dx and	B1 M1
	attempt to tidy Get result above	M1 A1

physicsandmathstutor.com

47	26		Mark S	Scheme	January
4	(i)	Let $x = \cosh \theta$ such that $dx = \sinh \theta d\theta$	M1		
		Clearly use $\cosh^2 - \sinh^2 = 1$	A1	Clearly derive A.G.	
	(ii)	Replace $\cosh^2 \theta$ Attempt to integrate their expression	M1 M1	Allow $a (\cosh 2\theta \pm 1)$ Allow $b \sinh 2\theta \pm a\theta$	
		Get $\frac{1}{4}\sinh 2\theta + \frac{1}{2}\theta$ (+ <i>c</i>) Clearly replace for <i>x</i> to A.G.	A1 B1	Condone no + <i>c</i> SC Use expo. def ⁿ ; three terms Attempt to integrate Get ${}^{1}/{}_{8}(e^{2\theta}-e^{-2\theta}) + {}^{1}/{}_{2}\theta$ (+ <i>c</i>) Clearly replace for <i>x</i> to A.G.	M1 M1 A1 B1
5	(i)	(a) State (x =) α None of roots	B1 B1	No explanation needed	
		(b) Impossible to say All roots can be derived	B1 B1	Some discussion of values close to central leading to correct conclusi	
	(ii)	y /	B1	Correct x for $y=0$; allow 0.591, 1.5	59, 2.31
		(1, 0.8)	B1	Turning at (1,0.8) and/or (1,-0.8)	
		$o \left(\begin{array}{c} \alpha \end{array} \right)_{\beta} \left(\begin{array}{c} \gamma \end{array} \right)^{x}$	B1	Meets x-axis at 90°	
		(1, -0.8)	B1	Symmetry in <i>x</i> -axis; allow	
6	(i)	Correct definitions used Attempt at $(e^{x}-e^{-x})^{2}/4 + 1$ Clearly derive A.G.	B1 M1 A1	Allow $(e^{x}+e^{-x})^{2}+1$; allow /2	
	(ii)	Form a quadratic in sinh x Attempt to solve Get sinh $x = -\frac{1}{2}$ or 3	M1 M1 A1	Factors or formula	
		Use correct ln expression Get $\ln(-\frac{1}{2}+\frac{\sqrt{5}}{2})$ and $\ln(3+\sqrt{10})$	M1 A1	On their answer(s) seen once	
7	(i)	$OP=3 + 2\cos \alpha$ $OQ=3 + 2\cos(\frac{1}{2}\pi + \alpha)$ $=3 - 2\sin \alpha$	M1	Any other unsimplified value	
		Similarly $OR=3-2\cos\alpha$	M1	Attempt at simplification of at lea correct expressions	st two
		$OS=3 + 2\sin\alpha$ Sum = 12	A1	cao	
	(ii)	Correct formula with attempt at r^2 Square <i>r</i> correctly Attempt to replace $\cos^2\theta$ with	M1 A1 M1	Need not be expanded, but three to	erms if it is
		$a(\cos 2\theta \pm 1)$ Integrate their expression Get $\frac{11\pi}{4} - 1$	A1√ A1	Need three terms cao	

physicsandmathstutor.com

Mark Scheme

January 2009

8	(i)	Area = $\int 1/(x+1) dx$ Use limits to ln(<i>n</i> +1) Compare area under curve to areas of rectangles	B1 B1 B1
		Sum of areas = $1x(\frac{1}{2} + \frac{1}{3} + + \frac{1}{(n+1)})$ Clear detail to A.G.	M1 A1
	(ii)	Show or explain areas of	M1
		rectangles above curve Areas of rectangles (as above) > area under curve	A1
	(iii)	Add 1 to both sides in (i) to make $\sum \binom{1}{r}$	B1
		Add $\frac{1}{n+1}$ to both sides in (ii) to make $\sum (\frac{1}{r})$	B1
	(iv)	State divergent Explain e.g. $\ln(n+1) \rightarrow \infty$ as $n \rightarrow \infty$	B1 B1
9	(i)	Require denom. = 0 Explain why denom. $\neq 0$	B1 B1
	(ii)	Set up quadratic in x Get $2yx^2-4x+(2a^2y+3a) = 0$ Use $b^2 \ge 4ac$ for real x	M1 A1 M1
		Attempt to solve their inequality Get $y > \frac{1}{2a}$ and $y < \frac{-2}{a}$	M1 A1

4726

(iii)	Split into two separate integrals	M 1
	Get $k \ln(x^2 + a^2)$	A1
	Get $k_1 \tan^{-1}(x/a)$	A1
	Use limits and attempt to simplify	M1
	Get $\ln 2.5 - 1.5 \tan^{-1}2 + 3\pi/8$	
		A1

Include or imply correct limits
Justify inequality
Sum seen or implied as 1 x y values
Explanation required e.g. area of last rectangle at $x=n$, area under curve to $x=n$
First and last heights seen or implied; A.G.
Must be clear addition
Must be clear addition; A.G.
Allow not convergent
Attempt to solve, explain always > 0 etc.
Produce quadratic inequality in <i>y</i> from their quad.; allow use of = or <

Factors or formula Justified from graph SC Attempt diff. by quot./product rule M1 Solve dy/dx = 0 for two values of x M1 Get x=2a and x=-a/2 A1 Attempt to find two y values M1 Get correct inequalities (graph used to justify them) A1

Or $p \ln(2x^2+2a^2)$ k_1 not involving a

AEEF

SC Sub. $x = a \tan \theta$ and $dx = a \sec^2 \theta d\theta$	M1
Reduce to $\int p \tan \theta - p_1 \mathrm{d}\theta$	A1
(ignore limits here)	
Integrate to $p\ln(\sec\theta) - p_1\theta$	A1
Use limits (old or new) and	
attempt to simplify	M1
Get answer above	A1